Version: A

2015-09-25

Specification for Approval

Customer:	
Model Name:	

S	upplier Approva	Customer approval	
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Version: A

2015-09-25

1. Revision Record

REV NO.	REV DATE	CONTENTS	Note
A	2015-09-25	NEW ISSUE	

Version: A

2015-09-25

2. Table of Contents

List	Description	Page No.
	Cover	1
1	Revision Record	2
2	Table of Contents	3
3	Scope	4
4	Product Information	5
5	Absolute Maximum Ratings	6
6	Electrical Specification	6
7	Optical Specification	8
8	Viewing Modes	8
9	Electro-Optical Characteristics Test Method	9
10	Outline Dimension	10
11	Table of Pin Assignment	11
12	MIPI-DSI interface	12
13	Reliability	13
14	Packaging	14

Version: A

2015-09-25

3. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.

If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution.

Version: A

2015-09-25

4. PRODUCT INFORMATION

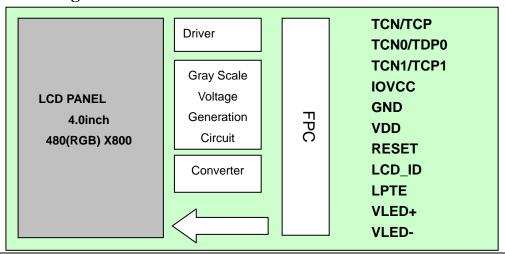
4.1. Description

DBT040TS02A is a color active matrix LCD module incorporating amorphous silicon TFT(Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, FPC and a backlight unit. The 4.0" display area contains 480(RGB) x 800pixels and can display up to 16.7M colors.

4.2. Applications

UMPC
Digital photo frame
GPS

4.3. Features


High Resolution: 480(RGB) x 800 Dots Panel Size:4.0(16:9 diagonal) inch

Interface: MIPI 8 LED backlight

4.4. General Specifications

Item	Specification	Unit	Remark
Display Mode	Normally Black	-	-
Outline Dimension	57.14(H) X 96.85(V) X2.05(T)	mm	-
Active Area	51.84(H) x86.40 (V)	mm	-
Resolution	480X(RGB)X800	dots	-
Pixel Pitch	108X108	μm	-
Pixel Configuration	RGB Stripe	1	-
Weight	TBD	g	-
Luminance	400 (TYP)	cd/m2	-
Signal Interface	MIPI	-	-
Viewing Direction	Free	o'clock	Note

4.5. <Block diagram>

Version: A

2015-09-25

5. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Min	Max	Unit
Logic supply voltage	VDD3	Ta= 25℃	-0.3	4.6	V
Supply voltage for step-up circuit	VCI	Ta= 25℃	-0.3	4.6	V
LCD supply voltage range	VGH-VGL	Ta= 25℃	-0.3	32	V
Operating temperature	Тора	Ta= 25℃	-20	65	$^{\circ}$ C
Storage temperature	Tstg	Ta= 25℃	-40	85	$^{\circ}$ C
Storage humidity	Hstg	Ta= 25℃	10	90	%

Note:

6. ELECTRICAL SPECIFICATIONS (Ta=25°C)

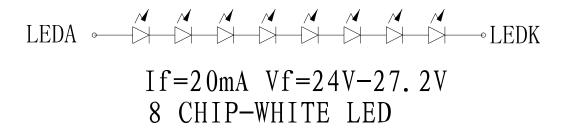
6.1. DC CHARACTERISTICS

Recommend Parameters for Electrical Characteristics

Item	1	Symbol	Unit	Min.	Тур.	Max.	Remark	
T	Input power supply		٧	1.65	1.8	3.3	Note 1	
Input power			V	2.5	2.8	3.3	Note 1	
	MIPI I/F	Idd+Ici	mA	-	1	35	Note 2	
Current		Islp	uA	-	-	250	-	
Spec	RGB I/F	Idd+Ici	mA	-	-	35	-	
	ROD 1/1	Islp	uA	-	-	150	-	
Frame	MIPI I/F RGB I/F	Hz		-	60	70	Note 3	
Input Signal	H Level	VIH	V	0.7 x VDD3	-	VDD3	_	
Voltage	L Level	VIL	V	0	-	0.3 x VDD3		
Output signal	H Level	VOH	V	0.8 x VDD3	-	VDD3	_	
Voltage	L Level	VOL	V	0	-	0.2 x VDD3	_	
I DI ECD		HBM	kV	-2	-	+2	_	
LDI ES	טט	MM	V	-200	-	+200	_	

^{*1)} If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operated with the absolute maximum ratings for a long time, its reliability may drop. It is not allowed for any of these ratings to be exceeded. Make sure all the design characteristics are adequate before the panel is initialed.

^{*2)} All the measurements should be operated with driver IC and experimental FPC mounted.


Version: A

2015-09-25

Note:

- *1) The operation is guaranteed under the recommended operating conditions only. The operation is not guaranteed if a quick voltage change occurs during operation. To prevent noise, a bypass capacitor must be inserted into the line close to power pin. Please make sure all the design settings are used within this range before the panel is initialed
- *2) Please make sure that DC is not supplied to LCD for long period. And do not supply voltage to LCD while within "sleep mode".
- *3) All the measurements should be operated with driver IC and experimental FPC.

6.2. Backlight Driving Section

6.3. BACKLIGHT CHARACTERISTICS

Parameter		Min.	Typ.	Max.	Unit	Remarks
LED Forward Voltage	VF	24	25.6	27.2	V	-
LED Forward Current	IF	-	20		mA	-
Operating LED life time	Hr	20000	40000		Hour	(1)

Remarks (1) The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25℃ and IF=240mA.

Version: A

2015-09-25

7. OPTICAL SPECIFICATIONS(Ta=25°C)

Iter	n	Symbol	Min.	Тур.	Max.	Unit	Remarks
Threshold	Threshold Voltage		4.1	4.3	4.5	V	
Inresnoia	voitage	Vth	1.6	1.8	2.0	V	
Contrast	Ratio	C/R	650	900	1300		Fig.1
Bright	noce		350	400		cd/m2	Full White Pattern
Dright	11688	-	330	400	-	- Cu/mz	(Transmittance 7.4%)
NTS	SC	%	65%	70%	75%		
Brightness U	Iniformity		80	-	-	%	Full White Pattern
Response	e Time	Tr+Tf	ı	35	42	ms	Fig.3
Color	WHITE	Wx	0.268	0.288	0.308		IBL=20mA
Coordinate	WIIIIE	Wy	0.299	0.319	0.339		Full White Pattern
		θl	70	85	-		Fig.4
view angle		θr	70	85	-	Degree	Center
		θu	70	85	-		(C/R>10)
		θd	70	85	-		

Note:

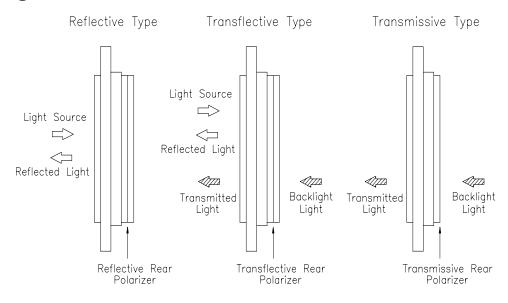
1. Contrast Ratio(CR) is defined mathematically as:

Surface Luminance with all white pixels

Contrast Ratio = Surface Luminance with all black pixels

2. Surface luminance is the center point across the LCD surface 500mm from the surface with all

pixels displaying white. For more information see FIG 1.


3. Response time is the time required for the display to transition from black to white (Rise Time, Tr) and from white to black(Decay Time, Tf). For additional information see FIG 3.

4. Viewing angle is the angle at which the contrast ratio is greater than 5. The angles are

determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

5. Optimum contrast is obtained by adjusting the LCD Threshold voltage (Vth& Vsat)

8. Viewing Modes

Version: A

2015-09-25

9. Electro-Optical Characteristics Test Method

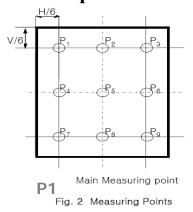


FIG. 1 Optical Characteristic Measurement Equipment and Method

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

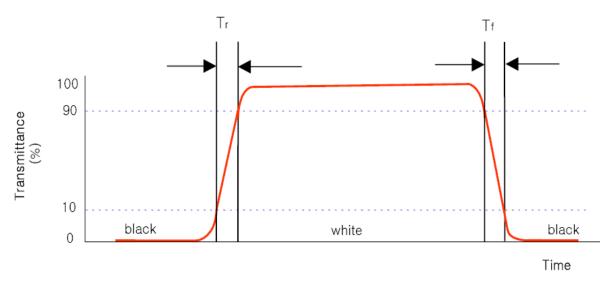
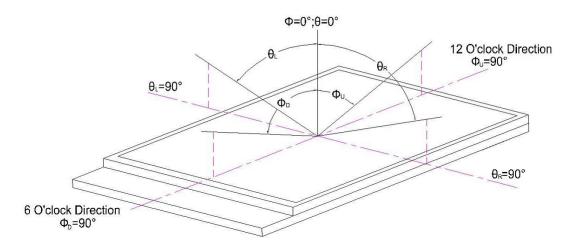
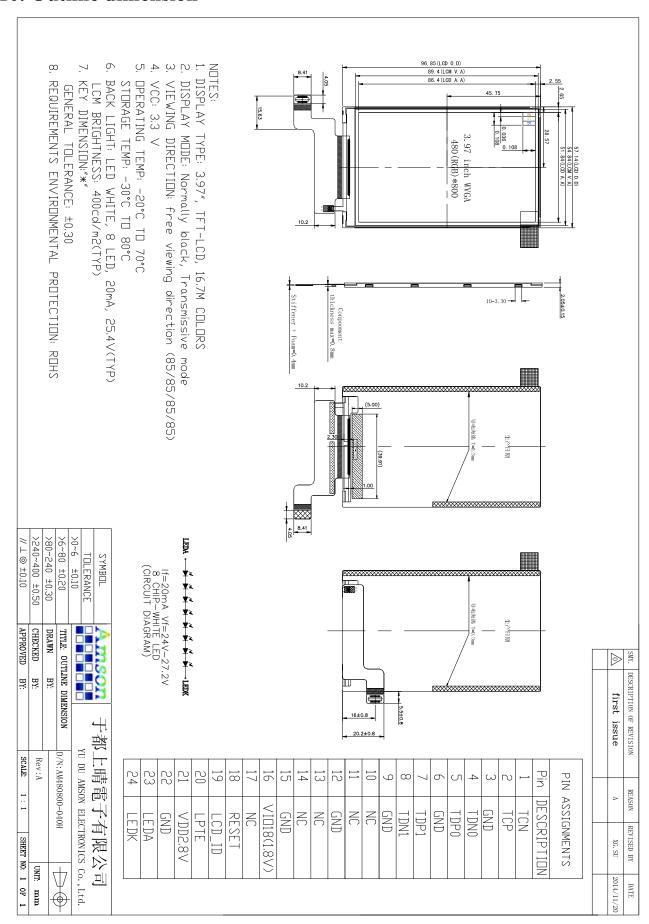


FIG.3 The definition of Response Time




FIG.4 The definition of Viewing Angle

Version: A

2015-09-25

10. Outline dimension

Version: A

2015-09-25

11. Table of Pin Assignment

LCM Pin Assignment

Pin	Symbol	I/O	Description	Remark
No.		-	-	
1	TCN	I	MIPI-DSI Clock Lane Negative	
2	TCP	I	MIPI-DSI Clock Lane Positive	
3	GND	P	ground	
4	TDN0	I	MIPI-DSI Data Lane Negative 0	
5	TDP0	I	MIPI-DSI Data Lane Positive 0	
6	GND	P	ground	
7	TDN1	I	MIPI-DSI Data Lane Negative 1	
8	TDP1	I	MIPI-DSI Data Lane Positive 1	
9	GND	P	ground	
10	NC	-	No Connect	
11	NC	-	No Connect	
12	GND	P	ground	
13	NC	-	No Connect	
14	NC	-	No Connect	
15	GND	P	ground	
16	VDDIO	I	I/O PWOER	
17	NC	I	No Connect	
18	RESET	I	RESET Signal	
19	LCD ID	I	LCD ID	
20	LPTE	О	Tearing effect output pin	
21	VDD2.8V	I	Power Supply	
22	GND	P	ground	
23	LEDA	I	LABAR Positive	
24	LEDK	I	LABAR Negative	

Note 1: I/O---Input/Output; I---Input; P---Power/Ground

Version: A

2015-09-25

12. MIPI-DSI interface

12.1. General description

The communication can be separated 2 different levels between the MCU and the display module

-Interface Level: Low level communication

-Packet level: High level communication

12.2. Interface level communication

12.3.General

The display module uses data and clock lane differential pairs for DSI. Both clock lane and data lane0 can driven Low Power(LP)or High Speed(HS)mode. Data lane1 and Data lane2 can be driven High speed mode only.

	•		
	Lane support mode	MPU(Host)	OTM8009A(Slave)
	Unidirectional lane	1 N N +-	+
Clock Lane	★High-Speed Clock only	PPI Lane Module	Lane Module PPI
	★Simplified Escape Mode (ULPS Only)		
	Bi-directional lane	Д. О-Р НУ	D-PHY L
Data	★Forward high-speed only	Lane Module	Lane Module
lane0	★Bi-directional Escape Mode		
	★Bi-direction LPDT	()	
	Unidirectional lane		•
Data lane1	★Forward high-speed only	D-PHY Lane Module	Lane Module
	★Simplified Escape Mode (ULPS Only)		
	Unidirectional lane	1	*
Data lane2	★Forward high-speed only	D-PHY Lane Module	Lane Module
	★Simplified Escape Mode (ULPS Only)		

Low Power mode means that each line of the differential pair is used in single end mode and a differential receiver is disable (A termination resistor of the receiver is disable) and it can be driven into a low power mode.

High Speed mode means that different modes and protocols in each mode when there are not used in the single end mode.

There are used different modes and protocols in each mode when there are wanted to transfer information from the MCU to the display module and vice versa.

The state Codes of the High Speed (HS)and Low Power(LP)lane pair are defined below.

Lane Pair	Line DC Voltage Levels		High Speed (HS)	Low-Pov	ver (LP)
State Code	Dn+ Line Dn- Line		Burst Mode	Control Mode	Escape Mode
HS-0	Low (HS)	High (HS)	Differential-0	Note 1	Note 1
HS-1	High (HS)	Low (HS)	Differential-1	Note 1	Note 1
LP-00	Low (LP)	Low (LP)	Not Defined	Bridge	Space
LP-01	Low (LP)	High (LP)	Not Defined	HS-Request	Mark-0
LP-10	High (LP)	Low (LP)	Not Defined	LP-Request	Mark-1
LP-11	High (LP)	High (LP)	Not Defined	Stop	Note 2

Version: A

2015-09-25

13. Reliability

Item NO.	Test Item	Test condition	Description
1	High temperature operation	Ta=70℃,240 h	Endurance test applying the electric operation under high temperature for a long time
2	Low temperature operation	Ta=-20°C,240 h	Endurance test applying the electric operation under low temperature for a long time
3	High temperature storage	Ta=80°C,240 h	Endurance test applying the high storage temperature for a long time
4	Low temperature storage	Ta=-30℃,240 h	Endurance test applying the low storage temperature for a long time
5	High temperature High humidity	Ta=60°C, 90%RH,240 h	Endurance test applying electric operation under high temperature and high humidity for a long time
6	Temperature Cycle	-30°C (30min), +80°C (30min) 200cycles	Endurance test applying the low and high temperature cycle One cycle
7	Shock Test	100G ,6ms Direction: X,Y,Z 3 times	Measure an aerospace product's response to mechanical shock

Version: A

2015-09-25

14. packaging TBD